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Abstract. The transition to spatiotemporal chaos in thermal convection is de- 
scribed and analysed by studying the properties of local and global variables. Be- 
yond the transit,ion point for spacetime chaos the system displays thermodynamics 
propertie in Fourier space. It is shown that a suitable free energy accounts for the 
experimental results. 

1. Introduction 

The transition to  spatiotemporal chaos in fluid instabilities presents different features 
depending on the system under study. It is often associated either with defect motion 
or with long wavelength couplings and it has to  be distinguished from fully developed 
turbulence that ,  instead, implies an energy cascade into small length scales [l]. In this 
paper we describe an experiment in which the spacetime evolution of Rayleigh-Benard 
convection [2] has been studied in order to investigate some general properties of the 
transition to  spatiotemporal chaos in extended systems and to compare them with the 
rnathemathical models [3-71 in which these properties are normally studied. 

To illustrate the general features of Rayleigh-Benard convection, let us consider a 
fluid layer confined between two horizontal solid plates and heated from below. When 
the temperature difference between the two plates A T  is smaller than the threshold 
value AT,, there is no fluid motion and the heat is transported across the layer only 
by conduction. In contrast when A T  exceeds ATc a steady convective flow arises, 
producing a pattern of parallel rolls with a well defined wavenumber p that  is of the 
order of 3.11/d, where d is the depth of the layer. The roll axes are parallel to  the 
shortest side of tjhe cell containing the fluid. 

Increasing A T  other instabilities that destabilize the main set of rolls may appear 
and finally the fluid motion becomes time dependent. We are interested in studying 
these transitions and the evolution toward chaotic and turbulent states of the time- 
dependent regimes. Other information about Rayleigh-Benard convection may be 
found in standard text books and review papers [2]. 

In the experiment that  we describe in this paper the horizontal fluid layer has an 
annular geometry. Indeed with this geometry and a suitable choice of the horizontal 
sizes of the cell, it is possible to  construct a pattern that is almost a one-dimensional 
chain of radial rolls (roll axes along radial directions, see also figure 1) with periodic 
boundary conditions. These features of the spatial pattern are very useful in order 
to compare the results of our experiment with those obtained in one-dimensional 
mathematical models [3-71. Specifically the inner and outer diameters of our cell are 
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Figure 1. Shadowgraphs of typical spatial patterns. White and dark regions corro- 
spond to cold and hot curmnts respectively. ( a )  Stationary spatial pattern at t) = 13. 
( b )  Snapshot of the spatial pat.t.crn at Q = 230 in a time-dcpendent regime (spacetime 
intcrmi ttency ). 

6 cm and 8 cm respectively, whereas the depth of the layer is 1 cm. The  working fluid 
is silicon oil with a Prantltl number of 30 and the computed value of AT, is 0.0G"C. 

As an  example of the spatial organization of the fluid mot.ion inside our cell, a t  
different values of 77 = AT/AT,, we report in figures l ( n )  and ( b )  the shadowgraphs of 
the convective pat.terns seen from above. Dark regions correspond to the hot currents 
rising up and white regions to the cold ones, going down. The  picture in figure l(a) is 
the image of a typical stationary struct,ure at 17 = 13, i.e. rather close t,o the convective 
threshold. Figure l (6)  is inst.ead a snapshot of chaotic spacetime evolution, at 77 = 
230. T h e  shatlowgrapli tccliniquc is very useful to have qualitative information about 
the  spatial structures. To quantitatively characterize the spacetime evolution of the 
system we measure, on the circle of mean diamet,er, the two horizontal components of 
the thermal gradient, averaged along the vcrtical direction. The measurements have 
been done by means of another optical method [8]. In what follows we will focus 
at.t.ent.ion only on the component of t.he gradient perpendicular t.0 the roll axis. This 
component is called u(z , t ) ,  wit.11 0 < 1: < 1, where 1 is the whole length of the circle 
of mean diamet.er. Other details about the experimental apparatus can be found in 
[9,10]. 

2. Spatial pat t~rns  in tiine-dcpciitlcnt regimes 

Analysing t,he fluid behaviour its a function of 71 = AT/AT,, we observe, t ha t  for 17 
around 1,  t.he spatial structure has about 22 rolls. This number increases with '7 and 
reaches 38 at, 17 around 200. il tlctailed analysis of the wavenumber selection process 
has been reported elsewhere [lo]. 

The spat.ia1 st.ruct,ure remains st.at.ionary for 17 < I64 where a subcritical bifurcation 
to tlie t,imc-depcntlcnt regime takes place. For 17 > 164 the time evolution is chaotic 
but., reducing 7, t.hc syst.em prcsei1t.s eit.her periodic or biperiodic oscillations, and at 
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71 = 149 it is again stationary. In the range 149 < 17 < 200 the time dependence consists 
of rather localized fluctuations that  slightly modulate the convective structure, which 
mantains its periodicity. The fractal dimension and the orthogonal decomposition [ll] 
indicate that the number of degrees of freedom involved in the dynamics is around 
3,  thus confirming that  this dynamic is produced by a small number of degrees of 
freedom. In these regimes the correlation length is of order one. These measurements 
indicate that low-dimensional chaos is associated with a spatial order. 

At higher 77 the spatial order begins to  be destroyed because of the appearance 
of bwsts detaching from the boundary layer. This regime appears a t  q = qc = 
200 where also the correlation length begins to  decrease. The snapshot, shown in 
figure l(b), corresponds to such a regime. They present several domains where the 
spatial periodicity is completely lost (we will refer to  them as turbulent) and other 
regions (that we call laminar) where the spatial coherence is still mantained. This 
mixture of laminar and turbulent regions is also called spatiotemporal intermittency 
[4], and clearly appears in our system a t  17 = qs = 248 [9]. 

3. Statistical properties of spatiotemporal chaos 

In several papers we have reported that ,  in our system, the transition to  spacetime 
chaos has the properties of a phase transition [7,9]. This result has been obtained 
by studying the statistics of the sizes of the laminar regions. Laminar and turbulent 
regions were distinguished by reducing the spatiotemporal evolution to a binary code 
in which one stands for turbulent and zero for laminar [9]. 

In this section we show that this transition can also be characterized by studying 
the statistical properties of the Fourier mode amplitudes and of some global quantities 
that  may be computed from the spatial Fourier spectra S ( k ,  t )  [la]. Indeed the time- 
averaged spatial Fourier spectra change [9] as a function of the control parameter 
and they become broadened for 17 > yS. As a consequence the Fourier spectra are 
good candidates to  study the transition to spacetime chaos. A similar approach has 
been recently proposed also by Hohenberg and Shraiman [l], who suggested using the 
dissipation-fluctuation theorem to define a temperature of the Fourier modes. This 
kind of description of spatiotemporal chaos has the advantage of dealing with averaged 
quantities such as the thermodynamic ones of a system near thermal equilibrium. 

In order to  construct an analogy of the transition to  spacetime chaos with the 
description of a system near thermal equilibrium we need to ask very simple ques- 
tions. How does the energy fluctuations scale as a function of the integration vol- 
ume? Have the Fourier modes and local amplitudes Gaussian distributions? Thus 
we are interested in knowing the statistical properties of the fluctuations W(x , t )  = 
u(x,t) - ( u ( z , t ) )  (( ) means time average), of their spatial Fourier transform W ( k ,  t ) ,  
of the energy E ( t )  and of a suitably defined entropy S ( t ) .  The energy is defined in 
the following way: 

with 2 < N ,  < N where N is the total number of spatial points. The total energy 
is E ( t )  = E ( t ,  N ) .  The dependence of the energy on N, shows how the root mean 
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square (RMS) value, A E ( N , ) ,  of the energy fluctuations scales as a function of N,, 
i.e. the volume of integration. 

The spectral entropy [12] is instead defined in the following way: 

NI 2 S( t )  -1 
so so k = l  

U ( t )  = - = - ~ @ s ( l ) l o g ( @ , ( t ) )  

where Q k ( t )  = Ii i(k, t)12/E(t) ,  So = log(N/2) is the equipartition value of S( t )  and 
N/2 the total number of Fourier modes. The parameter U is 1 at  the equipartition and 
0 when only one mode is excited. Thus ~ ( t )  is very useful to  see whether the system 
is ordered or disordered. It is important to stress that  E ( t )  and ~ ( t )  are not exactly 
an energy and an entropy but they behave like these two thermodynamic quantities. 

Also the distributions P ( W ) ,  of the local fluctuations W ,  and P(P) of the Fourier 
mode amplitudes @.,, (i and r denote the real and imaginary parts, respectively), 
change near the transition point for spatiotemporal chaos qs. 

Specifically we find P,(I@) tends to  a Gaussian distribution for almost all the 
modes for q > 7,. We point out that the same transition does not occur in P4(W) 
for all the spatial points, indicating that the local dynamics has not, in general, a 
Gaussian distribution. The fact that  the Fourier mode amplitudes have Gaussian 
distributions whereas the local dynamics does not, has been also reported in [13] and 
widely discussed in [l,  151. The reason of this effect is that  the small b Fourier modes 
are coarse-grained variables of the system because they imply an average over many 
correiation lengths [l,  141. 

We now analyse how the energy fluctuations scale as a function of N,. For 17 < 200 
the relative fluctuations 6E = A E ( N , ) / E ( N , )  do not follow a well defined law as a 
function of N,. In contrast, for 7 > qc, we find that bE decreases as a function of N, 
as a power law N,” that  extends over the range 2 < N,  < N .  The exponent p ( 7 )  tends 
asymptotically to  --1/2. The value of p indicates that above vs the spatial points are 
statistically independent and E ( t )  behaves, as function of the number of points, as an 
additive thermodynamic quantity. 

All these findings go toward a thermodynamical description of the transition to  
spatiotemporal chaos in which the Fourier modes may be considered as an ensemble 
of non-interacting degrees of freedom. An important question is how a ‘generalized 
temperature’ of the system may be defined [14]. The main difficulty arises from the 
fact that  the RMS fluctuations of are not constant as a function of b but present 
a high-frequency cut-off [9]. This phenomenon, which occurs in the chaotic behaviour 
of the Kuramoto-Shivanshinsky equation, makes the definition of the temperature a 
very difficult and still unsolved problem, because it is not clear what can be done 
with the modes whose fluctuations decrease exponentially as a function of k [9]. An 
approach in this direction has been made by Zalesky [16]. 

Instead, Hohenberg and Shraiman [l] suggested using the dissipation-fluctuation 
theorem to define the temperature of the system. This implies the knowledge of the 
linear response function of the system, which may be measured by perturbing it with 
a very small signal. This approach is certainly very interesting, and several tests have 
been done in our experiment, but no relevant result has been obtained. Indeed, it is 
not simple to extract a very small signal (the response to the perturbation) from the 
natural fluctuations of the system. Even in the case where this is possible, the errors 
in the calculation of the response function may be very large. 
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So we propose here an approach that is rather similar to  the one of [l], but it 
uses the natural fluctuations of the system. We know [17] that,  for a thermodynamic 
system at constant pressure and volume, the RMS fluctuations of energy and entropy 
are proportional to  I<At2C:t2T and I<At2Cit2 respectively, where C, and Cp are the 
specific heats a t  constant volume and constant pressure, T is the temperature of the 
system and I<, is the Boltzmann constant. 

0 a 

400 
0 

0 

Figure 2. Dependence on q of the mean values of ( a )  E and ( b )  U ,  and of the RMS 
values of their fluctuations (c) AE and ( d )  Au,  

To check these points we report in figure 2 the mean values of E ,  U and the RMS 
values AE,  Au of their fluctuations as functions of q. We see that ( E ) ,  figure 2(a), and 
( U ) ,  figure 2(b), are monotonically increasing as a function of q. The behaviour of U ,  

above qc = 200, indicates that  the power spectrum shape does not change as a function 
of q. From figure 2(d) we immediately realise that Au increases by a considerable 
amount near 7,. In figure 2(d) we also notice that Aa is almost constant above qs,  
as a consequence we can make the hypothesis that  Cp of our ‘thermodynamic system’ 
is constant above qs.  As we cannot distinguish, in our system, between a constant 
volume and a constant pressure process, we assume C = Cp 21 C,. Such an hypothesis 
has to  be verified a posteriori .  In figure 2(c), we see that,  for q > qs ,  AE grows linearly 
as a function of 7 (full line in figure 2(c)). As a consequence the ratio ( A E / A u )  may 
be considered proportional to  the ‘generalized temperature’ (? = rq)  of the system 
for q > q, where the Fourier mode amplitudes have a Gaussian distribution. From 
the data we obtain r = 73 f 1. 

In order to  demonstrate that  our definitions are self-consistent we construct, for 
q > qs = 248, a free energy F :  

F = -Crq ln(r7) + (go + C)rq 
where uo = 0.817 f 0.005, C = 0.165 f 0.005. From this free energy we may compute 
( E ) ,  (r) and C as functions of q,  via appropriate thermodynamic relationships [16]. 
The full lines, shown in figures 2(a) and ( b ) ,  are the result of the calculations, and are 
in agreement with the experimental points. This verifies the hypothesis used t o  define 
the ‘generalized temperature’ of the system. 

The equivalent of the Boltzmann constant may be also computed using Au and 
C. The result is the following: I<, = ( A U ) ~ / C  = (4.4 f 0.2) x low3.  
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4. Conclusion 

The transition from low-dimensional chaos to  weak turbulence has been investigated 
in Rayleigh-Benard convection in an annular geometry. 

In several other papers we have shown that the onset of spatiotemporal inter- 
mittency, in our cell, displays features of a phase transition that is reminiscent of a 
percolation. This result has been obtained by reducing the spacetime dynamics to  a 
binary code that catches the relevant features of the phenomenon. A cellular automa- 
ton model, whose transition probabilities have been obtained from the experiment, 
confirms the exsistence of a phase transition with the exponents of the percolation 

The transition to  spacetime chaos is accompanied by the appearance of Gaussian 
distribution for the Fourier mode amplitudes and by a relevant changes of the disti- 
butions of global quantities such the energy and the entropy. In addition, the energy 
fluctuations decrease when the integration volume increases. A ‘generalized tempera- 
ture’ has been defined by using the energy and entropy fluctuations. The existence of 
a free energy shows the self consistency of our definitions. An open problem is now to 
understand the meaning of a transition between a regime that displays thermodynamic 
properties (spacetime chaos) and another that  does not have these features. 

P81. 
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